117 research outputs found

    Communicating genetic information: a difficult challenge for future pediatricians

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of the pediatrician as genetic counselor is ideal because pediatricians have medical knowledge and experience with genetic disorders (e.g. Down syndrome). Moreover, pediatricians can provide comprehensive care in a medical home to patients with genetic disorders. However, changes in the curriculum of the pediatric resident are necessary to address the future challenges of effectively communicating genetic information to patients. The objective of this study was to explore these challenges and make recommendations for training to adequately prepare pediatricians for their future role as genetic counselors.</p> <p>Methods</p> <p>Three reviewers independently searched PubMed, OVID, and Medline databases to identify articles describing the challenges of communicating genetic information to patients, published from 1960 to December 2005. After the publications were identified and reviewed, four major areas of interest were identified in order to categorize the findings.</p> <p>Results</p> <p>Twenty-five publications were identified during the literature search. From the review, the following categories were selected to organize the findings: (1) Inherent difficulties of communicating and comprehending genetic information; (2) Comprehension of genetic information by pediatricians; (3) Genetics training in residency programs; and (4) The effect of genetic information on the future role of pediatricians and potential legal implications.</p> <p>Conclusion</p> <p>Pediatricians and residents lack essential knowledge of genetics and communication skills for effective counseling of patients. The review indicated that successful communication of genetic information involves a number of important skills and considerations. It is likely that these skills and considerations are universally required for the communication of most complex specialized medical information. In the past, communication skills have not been considered a priority. Today, these skills have become a demanding professional and even legal obligation. However, the challenges involved in communicating complex medical information cannot be successfully addressed with universal, one-size-fits-all recommendations. Residency training programs require changes to adequately prepare future pediatricians for the growing challenge of communicating genetic information. Four important skills should be considered in the training of residents to improve the communication of complex information to patients. These skills are (1) discriminating, (2) understanding, (3) simplifying, and (4) explaining information.</p

    The unfolded protein response and its relevance to connective tissue diseases

    Get PDF
    The unfolded protein response (UPR) has evolved to counter the stresses that occur in the endoplasmic reticulum (ER) as a result of misfolded proteins. This sophisticated quality control system attempts to restore homeostasis through the action of a number of different pathways that are coordinated in the first instance by the ER stress-senor proteins IRE1, ATF6 and PERK. However, prolonged ER-stress-related UPR can have detrimental effects on cell function and, in the longer term, may induce apoptosis. Connective tissue cells such as fibroblasts, osteoblasts and chondrocytes synthesise and secrete large quantities of proteins and mutations in many of these gene products give rise to heritable disorders of connective tissues. Until recently, these mutant gene products were thought to exert their effect through the assembly of a defective extracellular matrix that ultimately disrupted tissue structure and function. However, it is now becoming clear that ER stress and UPR, because of the expression of a mutant gene product, is not only a feature of, but may be a key mediator in the initiation and progression of a whole range of different connective tissue diseases. This review focuses on ER stress and the UPR that characterises an increasing number of connective tissue diseases and highlights novel therapeutic opportunities that may arise

    Patterns of Ancestry, Signatures of Natural Selection, and Genetic Association with Stature in Western African Pygmies

    Get PDF
    African Pygmy groups show a distinctive pattern of phenotypic variation, including short stature, which is thought to reflect past adaptation to a tropical environment. Here, we analyze Illumina 1M SNP array data in three Western Pygmy populations from Cameroon and three neighboring Bantu-speaking agricultural populations with whom they have admixed. We infer genome-wide ancestry, scan for signals of positive selection, and perform targeted genetic association with measured height variation. We identify multiple regions throughout the genome that may have played a role in adaptive evolution, many of which contain loci with roles in growth hormone, insulin, and insulin-like growth factor signaling pathways, as well as immunity and neuroendocrine signaling involved in reproduction and metabolism. The most striking results are found on chromosome 3, which harbors a cluster of selection and association signals between approximately 45 and 60 Mb. This region also includes the positional candidate genes DOCK3, which is known to be associated with height variation in Europeans, and CISH, a negative regulator of cytokine signaling known to inhibit growth hormone-stimulated STAT5 signaling. Finally, pathway analysis for genes near the strongest signals of association with height indicates enrichment for loci involved in insulin and insulin-like growth factor signaling

    Paternal Age as a Risk Factor

    No full text

    David L. Rimoin, MD, PhD 1936–2012

    No full text

    Preimplantation genetic diagnosis

    No full text
    • …
    corecore